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Abstract—Stereocontrolled N-acyliminium ion cyclisation of L-DOPA derived succinimide 5 has been investigated. Addition of
organolithiums to chiral non-racemic 5 yields oxoamides, which are cyclised diastereoselectively upon treatment with BF;-OEt,,
to afford 5,10b-trans pyrroloisoquinolones in moderate yields and high ee (99%). © 2001 Elsevier Science Ltd. All rights reserved.

N-Acyliminium ion cyclisation' is a valuable car-
bon—carbon bond formation method for the stereocon-
trolled synthesis of nitrogen heterocycles which has
been applied to the preparation of enantiomerically
enriched compounds.? It has been shown that
intramolecular reactions of cyclic N-acyliminium ions
with m-nucleophiles proceeds stereoselectively due to
steric control by the substituents already present in the
ring® or along the chain connecting the m-nucleophiles
and the nitrogen atom.*

We have described an efficient procedure for the syn-
thesis of several types of isoquinoline alkaloids based
on N-acyliminium ion chemistry.” Recently, we have
investigated the stereoselectivity of intramolecular reac-
tions of cyclic N-acyliminium ions with a substituent
adjacent to the iminium carbon, which has led to the
diastereoselective synthesis of 1,10b-cis thiazoloiso-
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quinolines.® In this paper, we wish to report the enan-
tioselective  synthesis of 5,10b-trans  pyrroloiso-
quinolones from an enantiomerically pure N-phenethyl-
imide 5. The key step would be the stereocontrolled
cyclisation of an N-acyliminium ion, which bears a
stereogenic centre o to the nitrogen atom.

Imide S was prepared from L-DOPA by standard func-
tional group manipulation, as outlined in Scheme 1.
Thus, protection of the amino group of L-DOPA, fol-
lowed by methylation yielded ester 1, which was sub-
mitted to successive steps of LiAlIH, reduction,
protection of the resulting primary alcohol and hydrol-
ysis of Boc amide to afford amine 4. Sequential treat-
ment of this amine with succinic anhydride followed by
Ac,0 and NaOAc yielded succinimide 5. Thus, this
imide was prepared in high overall yield from L-DOPA
(50%), and without epimerisation of the stereogenic
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centre, as imide 5 showed an enantiomeric excess equal
to the starting amino acid (99% ee), determined by
chiral phase HPLC.”

Succinimide 5 was treated with organolithiums (MeLi
or BuLi) to afford the corresponding oxoamides 6a,b.
Cyclisation of these oxoamides was accomplished with
BF;Et,0 in CH,CL? to afford pyrroloisoquinolones
7a,b, in which hydrolysis of the TBDPS group had also
occurred, in moderate overall yields. Cyclisation was
stereoselective, and the resulting pyrroloisoquinolones
were isolated as single 5,10b-trans diastereomers, not
detecting the presence of the corresponding cis
diastereomers. The stereochemistry was deduced by 'H
NMR. The J values of the ABX system formed by H-5
and H-6 protons indicate that H-5 is in a pseudo-axial
position. Besides, NOE difference spectroscopy showed
an enhancement between H-5 and the substituent in
10b (Me or Bu), as shown in Scheme 2 for 7a. These
data are consistent with a preferred half-chair confor-
mation in which the substituents in C-10b and in C-5
are in pseudo-axial and pseudo-equatorial positions,
respectively. Thus, the configuration was assigned as
55,10bS and both pyrroloisoquinolones were isolated
with high enantiomeric purity (99%).°

The stereochemical outcome of the cyclisation may be
explained as a result of conformational factors in the
transition state, being the rate determining step of the
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attack of the aromatic onto the N-acyliminium ion. The
stereochemical results are consistent with a late chair-
like transition state, in which the substituent in C-5 is
placed in a pseudo-equatorial disposition. Attack of the
aromatic ring onto the Re face of the N-acyliminium
ion leads to the observed stereochemistry, in which the
substituent in 10b (Me or Bu) assumes a pseudo-axial
position (A, Fig. 1). This stereochemical result is in
sharp contrast with related examples described in the
literature. According to Hart’s model, the most
favoured transition state would minimise A®-¥ strain.'”
Thus, for intramolecular cyclisations of m nucleophiles
on the N-acyliminium ion with substituents adjacent to
the nitrogen atom, an axial orientation is preferred to
avoid AU strain between the substituent and the
carbonyl of the N-acyl group.? This results in the
preferred formation of cis diastereomers of, for
instance, S5-phenyltetrahydro[2,1-a]isoquinolones,*® 5-
aryl-10b-butyltetrahydro[2,1-aJisoquinolones,'! indolizi-
dines,'? B-carboline derivatives'? or polycyclic isoindoli-
none derivatives.'* However, in our case, a balance
between A" strain and severe syn-axial 1,3 interac-
tions in transition state B, that would lead to a cis dia-
stereomer, favours the pseudo-equatorial disposition
for the C-5 substituent in the transition state A, leading
to 7a,b (Fig. 1). Similar effects have been described
for related structures that led to reversal of dia-

stereoselectivity as
interactions.*

a

result of competing

steric
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In conclusion, a stereoselective synthesis of enantiomer-
ically pure pyrrolo[2,1-alisoquinolones via tandem
organolithium addition—/N-acyliminium ion cyclisation
has been achieved. Of particular interest is the stereo-
control in the cyclisation step that leads to the 5,10b-
trans diastereomers.
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